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EQUILIBRIUM STABILITY CONDITIONS UNDER 1:3 RESONANCE* 

L. G. KBAZIN and E. E. SBNOL' 

The problem of asymptotic stability of the equilibrium position of an auton'omous 
system of differential equations is examined. It is assumed that the linearized 
system's matrix has two pairs of pure imaginary eigenvalues and that thefrequencies 
ratio equals three. Algebraic sufficient conditions for stability and instability 
are obtained. 

1. Statement of the problem. We examine the differential equation system 

du / dt = f(u), f (0) = 0, dim u = dim f = n (1.1) 
We study the asymptotic stability of the equilibrium position u= 0. Regarding the matrix 
A = 11 (df/ ~LL),,,~II we assume that: 
h 112 = f to, and hz,* = f i02, oz 

1) there are two pairs of pure imaginary eigenvalues, i.e., 

conditions for 
> OI>O; 2) Rehj<O for the remaining hi. The stability 

ok of general position were found in /l/. Several special cases exist in 
which the general criterion is inapplicable. These cases correspond to integral (resonance) 
relations between the frequencies. 

0, = or (1 :I); o* = am, (1 : 2); oz = 3w, (1 : 3) 
In case of (1:2) the equilibrium position, as a rule, is unstable /2,3/. The same is true for 
the case of (1:l) if a Jordan cell corresponds to the eigenvalue io (**). If twoeigenvectors 
correspond to eigenvalue io , then the case (1:l) proves to be completely analogous to(l:3)> 

Below we consider the (1:3) case for which there is no criterion specified by explicit 
formulas: to investigate the stabilityofthe steady-statessolution it is necessary to make a 
detailed study of the phase portrait of an auxiliary system of two differential equations /4/. 
The paper's basic purpose is to derive simple sufficient stability and instability conditions. 
Examples are given in Section 8, showing that 1:3 resonance can lead to stability in those 
cases when there is no stability if it is not taken into account. We assume that the relation 
o, = 30, is fulfilled exactly. The case when &- 30, was analyzed earlier (***). Below we 
examine a fourth-order system (1.1) for which all eigenvalues of matrix A are pure imaginary. 
By virtue of the reduction theorem /5/, this does not lessen the generality of the arguments. 

2. Original equations. We reduce system (1.1) to normal form up to terms of third 
order, inclusive, by the change of variables -U-+X, 5 = (z,,s,,s,,~,)~R'. In complex notation 
we obtain 

dZk / dt = hk (z) + Tk (z); 1 Tk (z) I < c 1 z I&; k = Iv 2 (2.1) 
z, = 51 + iz,, 2% = 52 + iz,; I z 12 = I Z112 + I % 1% 

The model system is written as 

dzl, / dt = hh. (z) 

h, = to,z, + zl (Au I z1 1' + -41% I zz 1’) + 4 @I*)* zz (2.2) 

Asymptotic stability of system (2.2) is equivalent to that of the homogeneous system resulting 
from (2.2) by discarding the linear terms. The linear terms ~~(2) and the cubic terms Pa (2) 
in the normalized equations commute (when Jordan cells are absent in A). Therefore, the 
systems u'= P,(u) and w'= P,(w) can be solved independently. If u (t. v) (V (0, v) = v) and w (& Y)* 
(~(0, y)=y) are the general solutions of these systems, then z (t, u) = u It, w (1, ?)I = w [t, u (t, v)l is the 

general solution of system z'= Pi+ ~~(2) (see /6/, for example). If all the eigenvalues of 
A are Pure imaginary, then Iz(t.V) I= Iw(t.Y)I. This equivalence follows from the formulas 
derived below, independently of the general considerations. If B, = B, = 0, then sys tern 
(2.2) has the same form as the nonresonance system 
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dzk/dt = hkZk f Zk 5 Akjl Zj 1%~ k=l,2 
j=l 

(2.3) 

Let us recall some well-known /l/ results on the stability of system (2.3). 

Criterion A. For the asymptotic stability of system (2.3) it is necessary and suf- 
ficient to fulfil the following conditions: 1) ~(0; 2) azz<O; 3) A = u11u22 - u12u21 > 0 
when aIs> and %,,>O. 

If system (2.3) is asymptotically stable, it admits of a Liapunov function of form 
L = kP, + Pa, pj = 1.2~ i2. In this COnneCtiOn 

dL / dt < -C I z I4 (c > 0) (2.4) 
Function L is a Liapunov function even when higher terms are present in (2.3). A strict non- 
fulfillment of Criterion A, i.e., the fulfillment of at least one of the inequalities; 1) 
a,,> (I; 2) a,, > 0; 3) A (0 when a,, > 0 and aZ1> 0, leads to the instability of system 
(2.3) independently of the higher terms of the Taylor expansion. Such a situation is called 
structurally-stable instability; system (2.3) has a growing solution in the form of an in- 
variant ray 

Pz (t) = pp~ (t); dp, / dt = czpla (a > O), p = const (2.5) 

3. Transformed equations. After the change of variables zk-p"'k?k, pk > 0, k = 1,2, 
from system (2.2) we obtain 

01' = 2P, (%P, + %P%) + 26,P,"~P,"*COS (0 - $1) (3.1) 

Pz’ = 2P, (%,P, + %,P,) + 2hPl”pP,“9cos ($ - 92) 

rli = la,, - %)P, + (at2 - 3Ul,)P, - 3b,p,‘!~P$!~ sin (rl, - $,) - b,p,"l?p,-'/,sin (J, - 4.J 

Al;; = UB( + iak,, B, = blemi@l, B, = b,e’*I (bk > 0), 11, = (p2 - 3& 

We make use of the homogeneity of (3.1) with respect to p1 and pz. In the variables p1 = 

Rcos8,Pr=Rsin8,dT=Rdt (O<R<m,O<O,<n/2), from (3.1) we obtain 

de i dz = f (e, $) = fl (e) + fz (e, $), d$ / dz = g (e, Ip) = g, w + g2 (09 49 
fi (0) = 2 cos e sin e [(a,, - alI) cos 8 + (as2 - aIS) sin el 
fi (e,q) = 2 COS'/~ e sin'/* 8 lb, cos e cos (q - q2) - b, sine x cos(* --Ml 

g, (e) = (a,, - 3a,,) cos 8 + (azz - 3a,,) sine 

g, (@,$I) = -3 b, cos’@ sin'/@ sin ($ - &) - 6, cos’Ml sin-WI x sin (9 - &) 

(3.2) 

dR / dr = RH (e,+), n (e,q~) = n, (e) + n, (e, up) 

II, (e) = 2 (alI cos3 e + aI2 co2 8 sin e + aSI cos e sin28 + as2 sin3 e) 

rip (O,$) = 2cosW sinW Ib, cos III COS($ - ql) + b, sine x COS(+ - &)I 

Finding e(r) and 9((r) from (3.2), from (3.3) we obtain 

R(~)=R(O)elip[Sn(e(s),~(s))ds] 
0 

(3.3) 

(3.4) 

Note lo. The interval O<z<m corresponds to the interval O<t<m since 

on the solution of (3.1). 

].&=W 
0 

To each solution of system (2.2) corresponds a solution of system (3.1). Conversely, to 
each solution of (3.1) corresponds a family of solutions of (2.21, each of which is distingui- 
shed by the choice of 'p1 (G (or 'pz (&I)) - The last two assertions are valid for segments of 
solution 2 (1) , on which neither z,(t) nor z2(r) vanishes. When zl=O or il=O the variable 
$ loses meaning and it becomes necessary to observe the correspondence between the solutions 

in more detail. The plane z,=O is invariant for (2.2), i.e., either z,(t)=0 or zl (1) does 
not vanish. The solutions of (2.2) with I, (I) ss 0 satisfy the equation 

zp' = io,n, + A Ipzl ) 2% I* (3.5) 
Having set p,rO in (3.11, we obtain the equation 

Pa' = 2%*P*z (3.6) 
The corresponding between the solutions of (3.5) and (3.6) is the same as that between the 
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solutions of (2.2) and (3.1) when zl#O and G#O. However, if r,=a, the equation for 
$ in system (3.1) becomes meaningless. Let us consider the behavior of the solutions as 

PP--0 * Let r,(O) = 0 ; then cp1 (t) - 'pl (0) as t -0 . Since 2; (0) = B,z,~, 'Pa (1) + 3% (0) + tpt or (~~0) - 
3%(0)+$,-i- n.As z%(t) passes through zero the corresponding q(t) jumps by the amount 1. If 
for a solution of (3.11, in which P,-.O as t+tp, a jump by the amount x is prescribed for 
rl, at t = to, then the correspondence beteween the solutions of (2.2) and (3.1) is extended 
to the whole plane z, = 0. The angular system (3.2) has a singularity at e =o. The traj- 
ectories of (3.2) when 0#0 are the same as for the system 0' = sin'/'0 f (9, *p), 9p' = sin"*@ (e, *). 
This system has two stationary points M,(O,rp,) and M,(O, $*.f n) on the line e=O. These are 
saddle points when b,#O. To the solution of (3.1), postulated above, reaching the line 8 = 0. 
corresponds a motion along an incoming separatrix of one of the singular points, an instantane- 
ous jump to the other, and then a motion along an outgoing separatrix of the second point. 

4. Necessary stability conditions for the model system. In system (2.2) the 
plane z1 = 0 is invarient and on it G' = io,z, + A,gz, Iz2 Is . Consequently, the condition 
Re A,, = az2 (0 is necessary for the stability of system (2.2). The other conditions in 
Criterion A are unnecessary (see Section 8). We now make use of the solutions of system (2.2) 
of the type of invariant rays. 

Lemma 1. For the asymptotic stability of the equilibrium position z=o of system 
(2.2) it is necessary that the inequality ll(8,,$,) (0 be fulfilled for each steady-state 
solution (8,, $*)of system (3.2). 

The proof follows from formula (3.4). 

Note 2'. No more than five steady-states (e,,g.) exist for system (3.2). Indeed, from 
the system f&X@)= R(%$$=O follows a fifth-degree equation in tge. After the finding of 

tge, the computation of II@,,&) requires only algebraic operations; the necessary condition 
formulated is, in this sense, algebraic. The detailed formulas have been presented earlier(*). 

Note 3O. If II (e,,$,,) = p>O for some steady-state @,,g,), then from (3.3) we obtain 
dR i dt = pRa or d 1 z 1 I dt = p I2 1 z 13 , namely, a growth usual for the solutions of a cubic homo- 

geneous equation (explosive ins%ability /7/). If two such steady-statesexist, then, depend- 
ing on the initial values 0 (0) and -4 (0) , we can realize some mode or other of explosive in- 
stability. 

5. Quadratic Liapunov functions and sufficient stability conditions.Each 
homogeneous Liapunov function &. (z,z*) of system (2.2) is a Liapunov function of system (2.1). 
This is a consequence of the properties of homogeneous systems /8/ and of the fact in the 
stability problem system (2.2) is equivalent to a homogeneous system (Sect.2). 

Lemma 2. If system (2.2) admists of a quadratic Liapunov function L, (2, z*) , then: 
lo. This same system admits of a Liapunov function of form 

&=' = k I z1 I ’ + I z2 1’ 

2O. 
(5.1) 

System (2.2) remains asymptotically stable under the substitutions B,+aB, and 
B,+aB, (06 a <I). In particular, Criterion A is fulfilled. 

Proof. lo. Let (2.2) admit of the Liapunov function 

L, = k I z1 I2 + I z2 I2 + B ll~la + B,,* (Q*)~ + B,,z,z, + B,,*z,*z,* + B,,z,’ 

If zl(t),z,(t) is a solution of system (2.21, then e@z, (t), e"@z, (t) 
any real fi). Therefore, 

2P 

+ B,,* (z**y + cz,z,* + c*z,*z, 

is a solution as well (for 

too is a Liapunov function for system (2.2). 
2'. The derivative of L," relative to system (2.2) (see (3.1)) is 

dL,” 1 dt = Mh- (~1, ~2.9) = 2 {ka,,p,a + @a,, + a,J PA + a,,~,~ -+ P;')P;'~ x [kb, ~0s ($ -91) + b, ~0s ($ - $41) 

By condition, Mh. (pl, PZ, $) <O for all p1 > 0, PZ > O,q. Let 

mh. (PI, P2) = $a" Mk (PI9 Pz, 9) = 2[ka,,p,' + (kU,, + Ugl) plpp i- ~3,~ -t S’$I;$,‘~~] (5.2) 

s = kab,= + bz2 + Bkb,b, cos A$, A$ = $2 - '4% 

*) See the footnote**)on p-163. 
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The function mk(p,,p,) only decreases under the substitutions b,-+ctt, and b,-+ab,(O<a <I) 

ad, therefore, L,” remains a Liapunov function. 
In order to obtain sufficient stability conditions we estimate +TU from above 

mk (PI? fh.) d P22~2 (Yh p2 (!I) = cd? + %!/ + CO , Y - Pl/ Pz (5.3) 

c2 = s". + z&z,,, c, == s”2 + 2 (ka,, + a,,), c0 = 2a,,<O 

If polynomial P*(y) is negative for all y> 0, then L, = kp, + pz is a Liapunov function. 
The conditions for the negativityof P, for Y> 0 are: 1) c%(k) (0; 2) cl(k) (0 or 3) ~1’ (k) - 
4~ (kh < 0. By 1, we denote the collection of positive solutions of inequality j) relative 
to k. 

Theorem 1. Suppose that the cj have been prescribed by formulas (5.3) ~ For the 
asymptotic stability of system (2.2) it is sufficient that the interval I, intersect either 
with I, or with I. K - 

Indeed, if 
iEK ~lflc~zu~~~~0~ 

, then L, = kp, + pz is a Liapunov function for system (2.2). 

Note 4'. Inequalities 1) and 2) reduce to quadratic ones, while 3) to a fourth-degree 
one. In two important special cases: A$=0 and A$==, inequalities 1) and 2) are linear, 
while 3) is quadratic. 

We fix (I~, , satisfying Criterion A, and we consider the asymptotic stability domain 
61 inthe (b,, b,)-plane by virtue of Theorem 1 (the true asymptotic stability domain ~2,151). 

From (5.2) and (5.3) we get that Q (A%) cQ (A%) if ~0s (A%) > ~09 (A%) . Thus, the case most 
dangerous for stability is A$ ~= O.IfA$=n the stabilitydomainismaximaland cancoincidewith the 
whole square (b,>,O, b,>,O) when aI2 <O and a,,<O. Having replaced A$ by zero, we obtain a 
structurally-stable sufficient condition (see the footnote on p.163). 

Lemma 3. If system (2.2) admits of a Liapunov function in the form of a fourth-degree 
homogeneous polynomial L, (2, z*) I then it also admists of a Liapunov function L,” of form 

The proof is analogous to that of Lemma 2. 

6. Necessary stability conditions for the complete system. Theorem 2. Let 
the angular system (3.2) have a structurally-stable steadystate P, =-@*,$*), 0<6*<ni2, 
and let n(O,,Ip,) = II, > 0. Then the steadystate u -= 0 of system (1.1) is unstable. 

Proof. Let M = II (d (f, g) / d (%4))0=e., rp=o*ll and let p1 and p, be eigenvalues of mat- 
rix M. By hypothesis, Repk F 0. Three cases are possible: a) He p1 (0, Re p2 (0; 

b) Reh>O, Rep2>0; c) &-CO, F”z (0. We consider them in turn. We normalize system 
(1.1) up to third-order terms, inclusive, and in (2.1) we introduce the variables R, 0. Q, r 
(see Sect.3). 
We obtain 

(6.1) 

Here 16k (R, 8, ‘pl, cpJI< CR for 0 <O,<Ot)<O, <n/2, k=O, 1. Let U, be a neighborhood of 

p* , in which dR / dz> ‘I, II,R when R <Ro. 
a) Let l(0,g) be a quadratic Liapunov function for the steadystate P, of system (3.2) 

and let dl/ dr.< -ql relative to system (3.2) in some neighborhood U, (P,) c L', . For I+.> 0 
let the line l(e,Ip) = 1, lie wholly in U,. In a four-dimensional space 1{4 we specify 
the domain 52 by the conditions H < &, 0 < 1 (6, 44 % 1,. In domain 51, dRldT>‘/, &R.On 
the boundary 1 = 1, we have, relative to system (2.11, dl/dr< -_rll, 4 CH < -"i& when 

R <R, (we can take R, <R,). If R (0) = e (R, and I(6 (O), 9 (0)) <l,, then as T grows 
the function R(t) increases monotonically up to the value R,. The instability has been 
proved because E is arbitrary. 

b) Let Z(e,Ip) be a Liapunov function for the steadystate P, of system (3.2) as t --.. -cu. 
We select Q in the same way as in a). Relative to (2.1) let dl/ dr) lizql, on 1 1, for 
R <&<R, - If R (0) = R, and l(e(O),q (O)),( 1, , then as r + --a3 the function K (4 

monotonically tends to zero, i.e., the trajectory tends to the steadystate z -- O.The presence 
of one such trajectory is sufficient for instability as T'OO. 

c) We reduce the original system dui dz = f(u) to normal form up to terms of order% + 3, 
inclusive, n = Ipa / n,l + 1 In=&/& when&/&is aninteger).Weintroduce thevaribles R, '%$p,z 
and by B1 and f& we denote two linear combinations of 6 - 8, and $ -$% diagonalizing mat- 
rix M. We introduce a scale on z such that II, =I. We obtain 

R' = R (1 + 6,) (' = d / d$ (6.2) 

(6.3) 

Here 61 (R, fL 0 are smooth functions when 1 p 1 <E,, and 
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We choose sti and ck so that the sum in (6.3) vanishes. We obtain 

R' = R(l + A,,), I A,, I< CR (6.5) 

cc,' = pIa, --I- A,, aa = pza, + c,,(s) R” + A2 (6.6) 

I At I < C, I a I2 + C,R I a I + C8Rn+‘, k = 1,2; 1 a Ia = aI2 + cc: 

In the general position case, when pLe is not an integer, we exclude as well the term c,,(=‘R” 
in the second equation in (6.6). Let Q(r) be a solution of the equation 

V = @ + C,%?~~, @ (0) = 0, (for nonintegral P%(r) = 0). 

We set F = ctI2 + (as - 0 (In R))a - Rm+* and !J = {a, R :F(a,, a,, R) <O,R <RI}. In dom- 
ain 8 I a, (< R”+‘lz and I a2 - @((In R) I< R"+'h. We treat Q as a domain in the original four- 
dimensional space Rw4. Computing the derivative of F relative to (l-l), in domain P we obtain 

F' < - R2”+’ (1 + C I in R I R/z) 
by using (6.5)-(6.6). Hence, F is a Chetaev function and the proof has been completed. 

Notes. 50 The constructions used in parts a) and b) of the proof go back to Chetaev 
/9/. 

6O. The structural stability of P, has been assumed only to shorten the proof. Here, for 
a large magnitude of ~zIII, a high smoothness is assumed for the right hand sides of system 
(1.1). This requirement is not central to the matter at hand and is the price we pay for the 
proof presented. 

7O. Theorem 2, in the formulation presented, is valid for several angular variables and 
in this form is applicable to a number of cases, including the one considered in /6/. 

Theorem 3. For system (2.1) let Use> 0 and as2 - al2 # 0. Then the steadystate 
z = 0 is unstable. 

Proof. We choose 6,>0 such that II@,+)> az2 when O>(n/2)-&, (n(n/2,$) = 2a,,; 
see (3.3)). Relative to (2.1) let dRI&>‘/,a,,R when O>(n/2)-&, and R <R,. Let 

aa - al2 =p<o. Then the inequality If(e,$)I >I p I((n / 2)-e) is valid in domain 0 >(n / 2)- 
6, for a sufficiently small 6, <60. Let B = {R, 8,$: f3 >(n / 2)- 6,, R CR,). We convince 

ourselves of the instability by repeating the arguments of Theorem 2 (case b)). When P>O 
the proof is analogous to case a) of Theorem 2. 

7. Limit cases of small and large resonance coefficients. Theorem 4. Let 
system (2.3) be asymptotically stable. Then a> 0 exists such that system (2.1) is asymptot- 
ically stable when b, <E and &<a. 

Proof. The Liapunov function L = kp, -i-p% for system (2.3) is, by virtue of (2.4), a 
Liapunov function for (2.1) when e is sufficiently small. 

Theorem 5. Let system (2.3) be structurally-stably unstable. Then a>0 exists 
such that system (2.1) is unstable when b,<e and b,(e. 

Proof. Three cases are possible. 
lo. Condition all> 0 is fulfilled. Then n,(e)>% when e<<,, (see (3.3)). When 

bt (l/sa,, (k = 1, 2) we have II (e,Q) > I/, a,, for 6 < B,, . We choose 6 (tl,, such thatp = fl (6)# 
0. Then sign f (6, $) ; sign p when 1 br I (Vg I p I _ We set E = 'I8 min (all, 1 P 1) and Q = (6 6 S, 
H <RI). The subsequent arguments are analogous to the proof of Theorems 2 and 3. 

2O. Condition a,,> 0 is fulfilled. The proof is analogous to case lo; the domain 52 is 
specified by the inequalities 6 >(nl2)- 6, R < R,. 

3O. a,, (0, a,, (0, aI2 > 0, aZ1> 0, ahaz2 - a11a21 (0. In this case system (2.3) has a 
solution of form (2.5) with p#O. For system (3.2) with b, = b, = 0 this signifies the pres- 
ence of an attracting limit cycle e = 8,: f, (e,) = 0, fl’ (e,) (0, II, (e,) = II,> 0. Let 8>0 be 
such that n,(e)>l/,n,,f(e,-6)<0 and f(e, + 6) co when Ie-e8*1<6 . Having set Q :: 

{I 0 - 0* I<6, R CR,}, we obtain instability, as in part a) of Theorem 2. 

Lemma 4. Let b,>O, b,> 0, A$ =ql -qS = n . Then the system fe 6444 = g, 649) = 0 
(see (3.2)) has a solution (e,, I&) such that: 1) matrix d (fz,gz)/ d&l,+) has no eigenvalues 
on the imaginary axis when e = 0* and 9 =%; 2) n, (e,, a+) > o. 

The lemma's proof is omitted. 
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Theorem 6. In system (2.1) let the coefficients Ah-! and the value b$ # 31 be fix- 
ed. Let & > 0, & > 0, b, = f$ I E, b, := 0% i E. Then Ed> 0 exists such that system (2.1) is un- 
stable for 0 <E (8~~. 

Proof. In (3.2) and (3.3) we introduce the change T'= et,. We obtain 

d0 I dr, = fe, d+ I dr, = g,, dR I dT, = RII, (7.1) 

fe = fz + &fir ge = g, + Eg,. J& = n, -t En, 

IIere fig replaces br in &,g%,n, . For a sufficiently small E, by virtue of Lemma 4 the 
system fe =I ge = 0 has a solution (e,, IPJ for which I&. (8*,tp,) > 0 and matrix d &, iBe) i d (9, 
9) has no eigenvalues on the imaginary axis. Applying Theorem 2 to (7.1), we get that system 
(7.1) and, by the same token, system (2.1) are unstable. 

Note 8O. The theorem's assertion is invalid when A$= R: system (2.1) can be asymptot- 
ically stable for any b,&O and b, > 0. For an arbitrary Arp#n the large magnitude of 
only one of the resonance coefficients (b, or b%) does not guarantee instability. 

8. Example of asymptotic stability when the conditions of Criterion A are 
not fulfilled: Qll>o, We consider a system of type (2.2) 

zl' = ios, + il (I z1 12 - 12 fzp 19, z2’ = Bioz, +- ;,(--14 1 z1 is--4 ) z8 1%) - 182, 

(all = 1, a21 <O, an <O, a,, < 0, B1 = 0, S, #O, $'a = s) 

The Liapunov function for this system is a fourth-degree homogeneous polynomial (compare with 
Lemma 3) 

Here it is essential that B,#o; when B,=O the inequality ,+,<6 is necessary for stability_ 
We remark that by virtue of Lemma 2 a Liapunov function in the form of a quadratic polynomial 
does not exist when a,l>~. 

9. Concluding notes. On sufficient stability conditions. Sufficient stabil- 
ity conditions can be obtained from the requirement that one of the homogeneous polynomials 
Lk (z, 2'1 of fixed degree k is a Liapunov function. For problems of asymptotic stability of 

a steadystate, in which algebraic stability criteria have been found, the stability is usually 
ensured by a quadratic Liapunov function L,(z, i*)(li = 2) . In the problem at hand effectively 
verifiable algebraic conditions exist that are necessary and sufficient for system (2.1) to 
admit of a quadratic Liapunov function. These conditions, obtained from the Sturm criterion, 
are cumbersome and are not cited here, and this is justified by the fact that L, (z. .1;*) is not 
suitable in the cases of most interest. The use of Lk with k>z is sometimes useful (see 
Sect.81, but from the nonexistence of an algebraic criterion it follows that asymptotically 
stable systems (2.1) not admitting of a Liapunov function LI, with k < km exist for an 
arbitrarily large k,. 

On necessary stability conditions. In order to evaluate the significance of the 
necessary conditions presented above , we note that if the angular system (3.2) has a limit 
cycle Y= @(s),J,(s)) I then for stability it is necessary that 

I, = \ II (8 (~1, $ (4) ds < 0 
The signs of these integrals are not taken into account by the necessary conditions presented 
in the paper. When the signs of the integrals over the limit cycles are taken into account, 
the necessary conditions presented above become sufficient as well if the angular system is 
structurally stable. 
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